منابع مشابه
Some New Ternary Linear Codes
Abstract: Let q d k n , , code be a linear code of length n, dimension k and minimum Hamming distance d over GF (q). One of the most important problems in coding theory is to construct codes with best possible minimum distances. In this paper new one-generator quasi-cyclic (QC) codes over GF (3) are presented. Some of the results are received by construction X.
متن کاملSome new quasi - twisted ternary linear codes ∗
Let [n, k, d]q code be a linear code of length n, dimension k and minimum Hamming distance d over GF (q). One of the basic and most important problems in coding theory is to construct codes with best possible minimum distances. In this paper seven quasi-twisted ternary linear codes are constructed. These codes are new and improve the best known lower bounds on the minimum distance in [6]. 2010 ...
متن کاملSome New Optimal Ternary Linear Codes
Let d3(n, k) be the maximum possible minimum Hamming distance of a ternary [n, k, d; 3]-code for given values of n and k. It is proved that d3(44, 6) = 27, d3(76, 6) = 48, d3(94, 6) = 60, d3(124, 6) = 81, d3(130, 6) = 84, d3(134, 6) = 87, d3(138, 6) = 90, d3(148, 6) = 96, d3(152, 6) = 99, d3(156, 6) = 102, d3(164, 6) = 108, d3(170, 6) = 111, d3(179, 6) = 117, d3(188, 6) = 123, d3(206, 6) = 135,...
متن کاملSome new results for optimal ternary linear codes
Let ( ) be the maximum possible minimum Hamming distance of a ternary [ ]-code for given values of and . We describe a package for code extension and use this to prove some new exact values of ( ). Moreover, we classify the ternary [ ( )]-codes for some values of and .
متن کاملNew Ternary Linear Codes 1
Let n; k; d; q]-codes be linear codes of length n, dimension k and minimum Hamming distance d over GF (q). In this paper, eighteen codes are constructed which improve the known lower bounds on minimum distance.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra Combinatorics Discrete Structures and Applications
سال: 2017
ISSN: 2148-838X
DOI: 10.13069/jacodesmath.327360